p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22⋊Q8, C4.13D4, C23.9C22, C22.12C23, C4⋊C4⋊3C2, (C2×Q8)⋊1C2, C2.6(C2×D4), C2.3(C2×Q8), C2.5(C4○D4), C22⋊C4.1C2, (C22×C4).5C2, (C2×C4).21C22, SmallGroup(32,29)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22⋊Q8
G = < a,b,c,d | a2=b2=c4=1, d2=c2, dad-1=ab=ba, ac=ca, bc=cb, bd=db, dcd-1=c-1 >
Character table of C22⋊Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ12 | 2 | -2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | -2 | 2 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
(5 15)(6 16)(7 13)(8 14)
(1 9)(2 10)(3 11)(4 12)(5 15)(6 16)(7 13)(8 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 16 3 14)(2 15 4 13)(5 12 7 10)(6 11 8 9)
G:=sub<Sym(16)| (5,15)(6,16)(7,13)(8,14), (1,9)(2,10)(3,11)(4,12)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,16,3,14)(2,15,4,13)(5,12,7,10)(6,11,8,9)>;
G:=Group( (5,15)(6,16)(7,13)(8,14), (1,9)(2,10)(3,11)(4,12)(5,15)(6,16)(7,13)(8,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,16,3,14)(2,15,4,13)(5,12,7,10)(6,11,8,9) );
G=PermutationGroup([[(5,15),(6,16),(7,13),(8,14)], [(1,9),(2,10),(3,11),(4,12),(5,15),(6,16),(7,13),(8,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,16,3,14),(2,15,4,13),(5,12,7,10),(6,11,8,9)]])
G:=TransitiveGroup(16,31);
C22⋊Q8 is a maximal subgroup of
C22.19C24 C23.36C23 C23.37C23 C23.38C23 C22.31C24 C22.32C24 C22.33C24 C22.35C24 C22.36C24 C23⋊2Q8 C23.41C23 D4⋊5D4 D4⋊6D4 Q8⋊5D4 D4×Q8 C22.45C24 C22.46C24 C22.50C24 C22.56C24 C22.57C24 S32⋊Q8 C62⋊Q8
C4p.D4: C8.18D4 C8.D4 C4.D12 C12.48D4 D6⋊3Q8 D10⋊2Q8 C20.48D4 D10⋊3Q8 ...
D2p⋊Q8: D4⋊3Q8 D6⋊Q8 D10⋊Q8 D14⋊Q8 D22⋊Q8 D26⋊Q8 ...
C23.D2p: C23.31D4 C22⋊SD16 C22⋊Q16 D4.7D4 C8⋊8D4 C8⋊D4 C23.47D4 C23.48D4 ...
C22⋊Q8 is a maximal quotient of
C23.63C23 C23.65C23 C23.67C23 C23⋊Q8 C23.78C23 C23.Q8 C23.81C23 C23.4Q8 C23.83C23 Q8⋊Q8 C4.Q16 D4.Q8 Q8.Q8 S32⋊Q8 C62⋊Q8
D2p⋊Q8: D4⋊Q8 D4⋊2Q8 D6⋊Q8 C4.D12 D6⋊3Q8 D10⋊Q8 D10⋊2Q8 D10⋊3Q8 ...
C23.D2p: C23.7Q8 C23.8Q8 Dic3.D4 C12.48D4 Dic5.14D4 C20.48D4 C22⋊Dic14 C28.48D4 ...
Matrix representation of C22⋊Q8 ►in GL4(𝔽5) generated by
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 3 |
0 | 2 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 4 | 0 |
G:=sub<GL(4,GF(5))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4],[0,4,0,0,1,0,0,0,0,0,2,0,0,0,0,3],[0,2,0,0,2,0,0,0,0,0,0,4,0,0,1,0] >;
C22⋊Q8 in GAP, Magma, Sage, TeX
C_2^2\rtimes Q_8
% in TeX
G:=Group("C2^2:Q8");
// GroupNames label
G:=SmallGroup(32,29);
// by ID
G=gap.SmallGroup(32,29);
# by ID
G:=PCGroup([5,-2,2,2,-2,2,40,101,46,302]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^4=1,d^2=c^2,d*a*d^-1=a*b=b*a,a*c=c*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C22⋊Q8 in TeX
Character table of C22⋊Q8 in TeX